Anda belum login :: 23 Nov 2024 18:19 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Improved Conditions for Global Exponential Stability of Recurrent Neural Networks With Time-Varying Delays
Oleh:
Zeng, Zhigang
;
Jun, Wang
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 17 no. 3 (May 2006)
,
page 623-635.
Topik:
NEURAL NETWORKS
;
conditions
;
global exponential
;
stability
;
neural network
;
time varying delays
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper presents new theoretical results on global exponential stability of recurrent neural networks with bounded activation functions and time - varying delays. The stability conditions depend on external inputs, connection weights, and time delays of recurrent neural networks. Using these results, the global exponential stability of recurrent neural networks can be derived, and the estimated location of the equilibrium point can be obtained. As typical representatives, the Hopfield neural network (HNN) and the cellular neural network (CNN) are examined in detail.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)