Anda belum login :: 27 Nov 2024 06:35 WIB
Detail
ArtikelInformation Criteria for Support Vector Machines  
Oleh: Kobayashi, K. ; Komaki, F.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 17 no. 3 (May 2006), page 571-577.
Topik: INFORMATION; information; criteria; support vector machines
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThis paper presents kernel regularization information criterion (KRIC), which is a new criterion for tuning regularization parameters in kernel logistic regression (KLR) and support vector machines (SVMs). The main idea of the KRIC is based on the regularization information criterion (RIC). We derive an eigenvalue equation to calculate the KRIC and solve the problem. The computational cost for parameter tuning by the KRIC is reduced drastically by using the Nyström approximation. The test error rate of SVMs or KLR with the regularization parameter tuned by the KRIC is comparable with the one by the cross validation or evaluation of the evidence. The computational cost of the KRIC is significantly lower than the one of the other criteria.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)