Anda belum login :: 17 Feb 2025 10:18 WIB
Detail
ArtikelFunction Approximation Using Generalized Adalines  
Oleh: Wu, Jiann-Ming ; Lin, Zheng-Han ; Hsu, P.-H.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 17 no. 3 (May 2006), page 541-558.
Topik: moment approximation; function approximation; adalines
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThis paper proposes neural organization of generalized adalines (gadalines) for data driven function approximation. By generalizing the threshold function of adalines, we achieve the K - state transfer function of gadalines which responds a unitary vector of K binary values to the projection of a predictor on a receptive field. A generative component that uses the K - state activation of a gadaline to trigger K posterior independent normal variables is employed to emulate stochastic predictor-oriented target generation. The fitness of a generative component to a set of paired data mathematically translates to a mixed integer and linear programming. Since consisting of continuous and discrete variables, the mathematical framework is resolved by a hybrid of the mean field annealing and gradient descent methods. Following the leave - one - out learning strategy, the obtained learning method is extended for optimizing multiple generative components. The learning result leads to parameters of a deterministic gadaline network for function approximation. Numerical simulations further test the proposed learning method with paired data oriented from a variety of target functions. The result shows that the proposed learning method outperforms the MLP and RBF learning methods for data driven function approximation.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)