Anda belum login :: 17 Feb 2025 13:58 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Spatially Constrained Mixture Model for Image Segmentation
Oleh:
Blekas, K.
;
Likas, A.
;
Galatsanos, N. P.
;
Lagaris, I. E.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 16 no. 2 (Mar. 2005)
,
page 494-497.
Topik:
segmentation
;
constrained mixture model
;
image segmentation
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.12
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Gaussian mixture models (GMM s) constitute a well - known type of probabilistic neural networks. One of their many successful applications is in image segmentation, where spatially constrained mixture models have been trained using the expectation - maximization (EM) framework. In this letter, we elaborate on this method and propose a new methodology for the M - step of the EM algorithm that is based on a novel constrained optimization formulation. Numerical experiments using simulated images illustrate the superior performance of our method in terms of the attained maximum value of the objective function and segmentation accuracy compared to previous implementations of this approach.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)