Anda belum login :: 23 Nov 2024 22:15 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Optimizing the Kernel in the Empirical Feature Space
Oleh:
Huilin Xiong
;
Swamy, M.N.S.
;
Ahmad, M.O.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 16 no. 2 (Mar. 2005)
,
page 460-474.
Topik:
Class Separability
;
Data Classification
;
Empirical Feature Space
;
Feature Space
;
Kernel Machine
;
Kernel Optimization
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.12
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we present a method of kernel optimization by maximizing a measure of class separability in the empirical feature space, an Euclidean space in which the training data are embedded in such a way that the geometrical structure of the data in the feature space is preserved. Employing a data-dependent kernel, we derive an effective kernel optimization algorithm that maximizes the class separability of the data in the empirical feature space. It is shown that there exists a close relationship between the class separability measure introduced here and the alignment measure defined recently by Cristianini. Extensive simulations are carried out which show that the optimized kernel is more adaptive to the input data, and leads to a substantial, sometimes significant, improvement in the performance of various data classification algorithms.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)