Anda belum login :: 22 Nov 2024 23:07 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
2-adic modular forms of minimal slope
Bibliografi
Author:
Mazur, Barry
(Advisor);
Emerton, Matthew James
Topik:
MATHEMATICS
Bahasa:
(EN )
ISBN:
0-591-85438-4
Penerbit:
Harvard University Press
Tahun Terbit:
1998
Jenis:
Theses - Dissertation
Fulltext:
9832360.pdf
(0.0B;
3 download
)
Abstract
Let $[/cal W]$ denote the space of 2-adic weights, and let $P(/kappa, T)$ denote the characteristic power series of the completely continuous operator $U/sb2$ acting on the space of overconvergent 2-adic cusp forms of weight $/kappa$. We construct a map $/kappa(u)$ from the 2-adic rigid analytic annulus $[/cal A]$ defined by $1 > /vert u/vert /ge /vert 64/vert$ to the space of 2-adic weights $[/cal W]$, such that for any $/kappa /in [/cal W]$(C$/sb2),$ the points of $u /in [/cal A]$(C$/sb2)$ lying over $/kappa$ are precisely the reciprocal zeroes of $P(/kappa, T)$ of minimal slope. Furthermore, we construct a family f(u) of overconvergent 2-adic cusp forms of weight $/kappa(u)$ rigid analytically parameterized by $[/cal A]$, such that for any $u /in [/cal A]$(C$/sb2),$ the cusp form f(u) is the unique normalized overconvergent 2-adic Hecke eigenform of weight $/kappa$ whose U-eigenvalue is equal to u. The construction is explicit, and allows us to prove precise congruences between the eigenforms f(u) for different values of u, as well congruences between the family of cusp forms f(u) and the family of Eisenstein series $E/sbsp[/kappa(u)][*].$
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Lihat Sejarah Pengadaan
Konversi Metadata
Kembali
Process time: 0.15625 second(s)